

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

CompX

INEL

LANL

I I NI

MIT

ORNL

PPPL

PSI

SNL

Lodestar

UNIVERSITY of WASHINGTON

Supported by

Office of

Core impurity density and P_{rad} reduction using divertor condition modifications College W&M **Colorado Sch Mines** Culham Sci Ctr

V. A. Soukhanovskii, LLNL and NSTX Team

> Lithium Research Thrust Session **NSTX Research Forum** Princeton, NJ 2 December 2009

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache IPP. Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Summary of my APS poster "Modifications in SOL and divertor conditions with lithium coatings..."

- Evaporative lithium coatings on carbon PFCs modify divertor and SOL sources
 - Lower divertor, upper divertor and inner wall recycling was reduced by up to 50 %
 - Local recycling coefficients reduced on inner wall and far SOL, remained similar in the outer strike point region
 - Lower divertor carbon source from physical sputtering also reduced
 - Divertor lithium influx increased, however, lithium was retained in divertor
- SOL transport regime changes from high-recycling to sheath-limited
 - Apparently small parallel *T_e* gradient
 - Detached inner divertor re-attaches, X-point MARFEs disappear
- Pedestal and core confinement improvement leads to
 - Reduction of ion inventory (density) by up to 50 % due to surface pumping
 - Effective screening of lithium from core plasma
 - Carbon and high-*Z* impurity accumulation
 - P_{rad} increases in the core, P_{SOL} significantly reduces

Significant core n_c and P_{rad} reduction observed in divertor heat flux mitigation experiments

Phys. Plasmas 16, 022501 (2009)

Lawrence Livermore National Laboratory Nucl. Fusion 49 (2009) 095025

Significant core n_c and P_{rad} reduction observed in snowflake divertor experiments

- Standard high- δ fiducial (black)
- "Snowflaking" divertor in red and blue
- In both snowflake divertor cases, strong detachment of outer SOL is observed
- Used lithium at ~ 10 mg/min

awrence Livermore

 First detachment observation in NSTX without gas puffing

Use deuterium divertor injection to study effects on core impurity density

- In detached divertor
 - physical and chemical carbon sputtering rates are reduced
 - reduced impurity source ?
 - neutral pressure increased
 - increased energetic ion sink?
 - change parallel momentum balance (viscosity), E_r , SOL flows (both drift and source) \rightarrow change radial impurity transport ?
- However, core n_c and P_{rad} reductions were observed even at low D₂ injection rates when OSP was not (or was marginally) detached
 - Gas shielding of metal surfaces in CHI gap?

Proposed run plan

- Request 1 run day
- Use 1) cold and 2) warm (*T*=215 C) LLD
- Use high-δ high-performance fiducial discharge
- Inject D₂ from Bay E divertor injector
 - Vary rates from 50 to 150 Torr I /s
 - Vary injection duration 50-200 ms
 - Inject during I_p ramp-up, in flat-top
- Measure carbon and radiated power profiles
 - in core plasma, in lower divertor
- Connect with impurity transport and edge 2D modeling
- Connect with pedestal stability analysis
 - Reduced "ear" density may change edge density gradient and affect ELMs

P

0.5

Z(m)

IR, D $_{lpha}$ and D $_{
m V}$

cameras

1.0

passive

 Bolometer chord Tile Langmuir probe

1.5

plates

vacuum

vessel

> 128805 0.525 s

R(m)